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Abstract

Deep neural networks are susceptible to adversar-
ial examples; small and imperceptible changes
made to the input that can completely alter the
prediction of the model. To make neural net-
works more robust to these adversaries, multiple
defenses have been proposed. Among those, ad-
versarial training is one of the most promising
strategies to make neural networks more robust to
adversarially crafted attacks. This paper system-
atically reviews and evaluates current approaches
and phenomenons, and outlines future directions
in the field.

1. Introduction
In the past decade, deep learning made significant break-
throughs in various domains, including computer vision
(Krizhevsky et al., 2012) and natural language processing
(Vaswani et al., 2017). Despite these advancements, neural
networks remain vulnerable to adversarial examples - sub-
tle perturbations that deceive the classifier (Szegedy et al.,
2014). See Figure 1 for an example. Researchers developed
stronger attacks (Kurakin et al., 2017; Carlini & Wagner,
2017; Goodfellow et al., 2015), while others explored de-
fense strategies (Madry et al., 2018; Papernot et al., 2016).
Notably, adversarial training has proven to be one of the
most effective technique, where models are exposed to ad-
versarial examples during training to enhance robustness.

This review presents both phenomenons of adversarial ex-
amples and research directions in adversarial training. After-
wards, future research directions are presented. It focuses on
the classical supervised learning approach of independent
and identically distributed samples. Adversarial attacks also
extend to other domains, such as natural language process-
ing (Jia & Liang, 2017) and graph neural networks (Gosch
et al., 2023).
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Figure 1. In the left picture, the network confidently predicts ”pig”
(91%). When combined with adversarial perturbation, the classifier
is fooled, now predicting ”airliner” (99%). Figure taken from
Kolter & Madry (2018).

2. Preliminaries
2.1. Adversarial Robustness

Consider a data distribution D over pairs (x, y) of input
x ∈ X ⊆ Rd with a corresponding label y ∈ Y . Let
Fθ : X → Y denote a deep neural network parame-
terized by weights θ where for every input x, Fθ(x) =

argmaxi f
(i)
θ (x) denotes the classification of the network

and f
(i)
θ (·) the i-th logit value. An adversarial example is

defined as any x′ = x + δ such that Fθ(x) = y is the cor-
rect prediction, but Fθ(x

′) ̸= y leads to a misclassification,
where δ ∈ ∆ is a set of allowed adversarial perturbations
(i.e., the threat model). For a ℓp-norm perturbation bound
of size ϵ, the set of adversarial perturbation is defined as
∆p = {δ : ||δ||p < ϵ}. A neural network is considered
adversarially robust on the input x, if Fθ(x+ δ) = y holds
for all perturbed versions of the input defined by the threat
model ∆p. The majority of work considers the ℓ2 or ℓ∞
norm to define the perturbation set.

2.2. Adversarial Attacks

FGSM. One of the simplest forms of generating an adver-
sarial perturbation for the ℓ∞-ball is the Fast Gradient Sign
Method (FGSM) (Goodfellow et al., 2015), where

δ = ϵ · SIGN(∇xL(fθ(x), y))

It generates an optimal perturbation under the assumption
that the network is locally linear in the vicinity of the input.
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Algorithm 1 FGSM Adversarial Training (Goodfellow et al.,
2015)

1: Input: data X , epochs T , perturbation bound ϵ, learn-
ing rate τ , model weights θ

2: for t = 1 . . . T do
3: for batch B ⊂ X do
4: inner maximization
5: δ ← ϵ · SIGN(∇xL(fθ(x), y))
6: outer minimization
7: θ ← θ − τ · ∇θL(fθ(x+ δ), y)
8: end for
9: end for

PGD. Projected Gradient Descent (PGD) (Madry et al.,
2018) is one of the most popular methods for generating
strong adversarial attacks generated by

δ(t+1) ←
∏
∆∞

(δ(t) + α · SIGN(∇xL(fθ(x+ δ(t)), y)))

where δ(0) is randomly sampled from ∆∞. It is a multi-
step attack based on FGSM where after each step for a
specific step size α, the negative loss is projected back onto
the perturbation set ∆∞ using the projection operator

∏
.

Madry et al. (2018) hypothesize this attack to be a universal
attack amongst all first-order optimization methods and it
is regarded as one of the best attacks and basis for many of
the most successful training techniques.

2.3. Adversarial Training

Adversarial training is a technique to make models more
robust to adversarial attacks. Madry et al. (2018) formulates
the optimization procedure as a min-max problem

argmin
θ

E(x,y)∼D

[
max
δ∈∆
L(fθ(x+ δ), y)

]
Intuitively speaking, adversarial training aims to minimize
the loss under the worst-case adversarial perturbation for a
specific threat model. The inner maximization problem is
intractable, and one of the main objectives of adversarial
training is to find a good approximation through attacks
such as FGSM (Goodfellow et al., 2015) or PGD (Madry
et al., 2018), which represent a lower bound to the inner
maximization problem. The outer minimization is then using
this perturbed version of the input, and tries to minimize
the loss, usually cross-entropy. The full adversarial training
algorithm for FGSM is shown in Algorithm 1.

3. Phenomenons in Adversarial Training
This section provides some interesting phenomenons, obser-
vations, and challenges of adversarial training and adversar-
ial examples in general.

Gradient Masking. The term was first introduced by Pa-
pernot et al. (2017) as a defense strategy that prevents the
calculation of useful gradients to find a solution to the inner
maximization and therefore the generation of adversarial per-
turbation (Papernot et al., 2017). Athalye et al. (2018) define
three special cases of gradient masking: (1) shattered gradi-
ents, caused by non-differentiable operations or numerical
instability, (2) stochastic gradients that depend on test-time
randomness, and (3) vanishing/exploding gradients, which
are a common problem in deep neural networks that lead
to unusable gradients (Athalye et al., 2018). Athalye et al.
(2018) claim that defenses that rely on gradient masking
give a ”false sense of security”, as they can often be broken
by approximations of the gradient, for example by inserting
smooth functions that replace the non-differentiable parts of
the network. Furthermore, Tramèr et al. (2018) observe that
one-step attacks such as FGSM (Goodfellow et al., 2015)
used for adversarial training lead to a degenerate solution
of the min-max problem, where the model learns to mask
the gradients instead of becoming smooth and robust in the
vicinity of the input samples.

Robust Overfitting. It is commonly known that neural
networks tend to generalize very well despite being trained
for very long to overfit on the training data, a phenomenon
often referred to as epoch-wise double descent (Belkin et al.,
2019; Nakkiran et al., 2021). Rice et al. (2020) observe a
similar phenomenon for adversarial training which they coin
robust overfitting. They show that overfitting is a dominant
phenomenon in adversarial training, where the robust train-
ing loss keeps decreasing when training for longer, while
the robust test loss increases again. A typical training curve
of standard and adversarial training that display epoch-wise
double decent and robust overfitting, respectively, can be
found in Appendix A. To mitigate robust overfitting, the
authors experiment with several regularization and augmen-
tation techniques, and find simple early stopping to be one of
the most effective to prevent the onset of robust overfitting.

Robustness and Accuracy Trade-Off. Tsipras et al. (2019)
show that there provably exists a trade-off between accu-
racy on clean images and the robustness with regards to
adversarial perturbations. They attribute the reason for the
trade-off to be that neural network classifiers assign weight
to features that are weakly correlated with the target label,
and when perturbed adversarially, these features are corre-
lated with the wrong target class. As a consequence, almost
all adversarially trained models have a drop in accuracy
compared to standard models. However, this drop has been
shown to be a phenomenon of bad choice of perturbation
set (Suggala et al., 2019).

Transferability of Adversarial Examples. A very intrigu-
ing property of adversarial examples is that they have been
shown to transfer across models with different training ar-
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chitectures (Szegedy et al., 2014). An adversarial example
generated on model FA is likely to also fool the classifier
of model FB , despite it being completely different. The
transferability allows for black box attacks, where the at-
tacker does not have access to the gradients of the model.
Ilyas et al. (2019) hypothesize that one reason for transfer-
ability is that inputs usually contain robust and non-robust
features, and classifiers make use of non-robust features in
their prediction, that can however flip the prediction when
small adversarial noise is added.

4. Methods
This section outlines different research directions in adver-
sarial training.

4.1. Regularization

The main motivation behind regularizing adversarial train-
ing is to smoothen the loss landscape, as this can promote
robustness. Broadly speaking, adversarial regularization ap-
proaches add regularization by punishing sharp differences
between the perturbed and unperturbed version of the input.

Zhang et al. (2019b) propose TRADES to trade off robust-
ness against accuracy

LTRADES = LCE(fθ(x), y) + λ ·DKL(fθ(x), fθ(x+ δ))

where λ is the hyperparameter for the trade off. The first
term optimizes for accuracy via the cross-entropy loss, and
the second term encourages a smooth loss landscape by min-
imizing the KL-Divergence between the logits of the natural
example f(x) and the adversarial example f(x + δ). On
top, the authors propose to maximize the KL-Divergence
for finding an adversarial perturbation during the inner max-
imization. MART (Wang et al., 2020) extends TRADES by
weighting the DKL by 1− py(x) where py(x) refers to the
softmax probability of the correct label. Other approaches
for example use a nuclear norm regularizer based on the
batched logit differences between clean and perturbed inputs
||fθ(X+δ)−fθ(X)||∗ (Sriramanan et al., 2021) or leverage
the first-order Taylor expansion to encourage linearity in the
vicinity of the input (Qin et al., 2019).

4.2. Ensembles

Tramèr et al. (2018) are the first to introduce ensembles into
adversarial training to enhance the diversity of perturbations.
They leverage pre-trained models to generate adversarial
examples used to train a different model. This technique
allows to decouple the generation and learning step and
possibly prevent the onset of gradient masking (Papernot
et al., 2017). Motivated by the observation that different ad-
versarial training methods are robust on different examples,
Liu et al. (2023) develop Collaborate Adversarial Training

(CAT) to enable model and knowledge interaction between
multiple classifiers. Croce et al. (2023) propose Model
Soups, which are linear interpolations of model parameters
trained against different ℓp normed attacks to smoothly trade
off robustness against a diverse set of adversarial attacks.

4.3. Data Generation & Augmentation

Adversarial training suffers from robust overfitting (Rice
et al., 2020). Inspired by the work from Schmidt et al.
(2018) hinting at the fact that robust generalization requires
more training data, there has been an increasing interest
in ways to incorporate more natural or generated data into
training. Carmon et al. (2019) were among the first to use a
semi-supervised learning algorithm for adversarial training
by pseudo-labeling data and performing regular adversarial
training afterward. Rebuffi et al. (2021) experiment with dif-
ferent data augmentation techniques such as MixUp (Zhang
et al., 2018), Cutout (DeVries & Taylor, 2017) or CutMix
(Yun et al., 2019). Combined with model weight averaging
(Izmailov et al., 2018), an exponential moving average over
the model parameters θ with a specific decay rate τ where
θ′ = τ · θ′ + (1− τ)θ, they significantly enhance adversar-
ial training and mitigate the negative side effects of robust
overfitting. They apply data augmentation before the adver-
sarial attack, as otherwise, the augmentation will destroy the
adversarial perturbation. Other works experimented with
pseudo-labeling data generated through generative models
(Gowal et al., 2021) and more recently also specifically
using diffusion models (Wang et al., 2023).

4.4. Efficient Adversarial Training

The adversarial training computation time is dominated by
the multi-step procedure of finding an optimal adversary (e.g.
PGD (Madry et al., 2018)). Therefore, a line of research is
about making adversarial training more efficient. Shafahi
et al. (2019) present a ”free” adversarial training algorithm
that does not incur any additional computational cost. The
core idea is to calculate the derivate with respect to weights
∇θL and input∇xL in the same backpropagation step. The
adversarial noise generated by gradient ascent from the
current backpropagation step is then used in the forward
pass of the next step. This allows Shafahi et al. (2019) to
recycle gradient information and use a single step for weight
update and adversarial noise generation. Since the noise is
dependend on the input, Shafahi et al. (2019) train on the
same batch for multiple hops. The detailed algorithm can
be found in Appendix B.

Wong et al. (2020) hypothesize that the main benefit from
”free” adversarial training comes by starting from a non-zero
initial input perturbation, and not specifically from using the
perturbation from previous steps. Therefore they initialize
the noise δ = U(−ϵ, ϵ) uniformly before performing the
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conventional FGSM (Goodfellow et al., 2015) adversarial at-
tack. The authors find this technique to perform on par with
significantly more time-consuming attacks such as PGD
(Madry et al., 2018). Another notable technique to speed
up training is YOPO (You Only Propagate Once) (Zhang
et al., 2019a) which is motivated by the observation that
the adversary update is only coupled with the first network
layer. This allows the authors to only rely on the first layer
of the neural network for most of the gradient update steps.

4.5. Other Methods

There exist several other promising research directions for
adversarial training. Kim et al. (2023) analyze adversarial
training from a frequency perspective and find a way to
shift the inputs into the low-frequency region which leads
to faster convergence, smoother predictions and ultimately
improved robustness. Xie et al. (2020) try to promote the
gradient quality to generate stronger adversarial attacks by
finding smooth alternatives to the ReLU function such as
the GELU (Hendrycks & Gimpel, 2016). Another line of
research uses an instance adaptive perturbation bound ϵ that
can change during training and depend on the distance to
other points on the training manifold (Balaji et al., 2019).

5. Review
In recent years, adversarial training has received a lot of at-
tention in the research community, leading to numerous ap-
proaches being explored. This section reviews the methods
presented in this paper and takes a broader look at adversar-
ial robustness in general. Benchmark results of the methods
presented in this paper can be found in Appendix C.

Regularization has been shown to be an effective technique
to improve the generalization of adversarial training, both by
preventing robust overfitting as well as enforcing a smoother
loss landscape in the vicinity of the input to counteract gra-
dient masking. It does usually not incur any additional
training cost and is an effective tool to enhance adversar-
ial training. At the same time, performance gains solely
from regularization are not solving the issue of adversarial
examples.

Ensembles improve machine learning performance in a lot
of different tasks, including adversarial training. They are
great to diversify adversarial examples and mitigate issues
such as robust overfitting. However, ensemble techniques
can lead to significant computational overhead that is cur-
rently not justified in performance gains.

Data generation and augmentation methods are highly effec-
tive in enhancing robustness and generalization. Still, they
come at the cost of increased training time, especially with
multi-step attacks for the inner maximization.

Lastly, efficient adversarial training methods are of high
importance, as it can enhance all other methods by finding
good approximations of the optimal adversarial perturbation
quickly. One of the biggest challenges for efficient methods
is to ensure the diversity of adversarial examples while using
as little as possible training overhead, i.e. steps for the inner
maximization.

Analyzing the RobustBench benchmark for adversarial ro-
bustness (Croce et al., 2020) reveal following trends: (1)
All leading solutions heavily rely on large amounts of extra
(synthetic) data. (2) The top-performing approaches are
based in adversarial training. (3) There hasn’t been any
significant breakthroughs in adversarial robustness in the
recent past.

6. Conclusion
Adversarial Training remains to be the most effective tech-
nique to enhance the robustness of neural networks. Over-
coming challenges like gradient masking and robust over-
fitting is achieved through diverse regularization, ensemble,
and augmentation techniques. The emergence of diffusion
models opens up the opportunity to train with an abundance
of data. This calls for the development of efficient methods
capable of generating strong adversarial examples without
the need for multiple gradient ascent steps during the inner
maximization.

7. Future Work
Future research should focus on efficient adversarial train-
ing methods that can handle large amounts of synthetic data.
Furthermore, new data augmentation techniques could en-
sure less overfitting, better sample efficiency, and better
generalization. Adversarial training also lacks theoretical
understanding. Recently, Latorre et al. (2023) has disproven
a corollary of Danskin’s Theorem that has long been taken
for granted (Madry et al., 2018): a solution to the inner max-
imization problem yields a descent direction for the robust
loss. PGD (Madry et al., 2018) remains the gold standard
of strong first-order adversary methods, but this cannot be
explained by theory anymore. More generally, a better un-
derstanding on the theoretical side could give rise to novel
and creative solutions.

A direction that could complement adversarial training is
certified training (Gowal et al., 2019; Shi et al., 2021), which
tries to find provable upper bounds on the worst case per-
turbation. This can for example be achieved by linear relax-
ations (Gowal et al., 2019). In a broader context, one could
start to rethink how to define adversarial examples, as funda-
mental principles such as imperceptibility and optimization-
based attacks do not transfer well to other domains such as
Natural Language Processing (Carlini et al., 2023).
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A. Robust Overfitting
Robust overfitting is a phenomenon first observed by Rice et al. (2020). It describes that overfitting can occur during
adversarial training, and that it can have negative consequences on the adversarial robustness. A visualization of robust
overfitting can be found below (Figure 2).

Figure 2. The learning curves for both a robust and standard trained model replicating the experiment done by (Madry et al., 2018) on
CIFAR-10. The curves demonstrate “robust overfitting”; shortly after the first learning rate decay the model momentarily attains 43.2%
robust error, and is actually more robust than the model at the end of training, which only attains 51.4% robust test error against a 10-step
PGD adversary. Figure and Caption taken from Rice et al. (2020).

B. ”Free” Adversarial Training
Free Adversarial Training (Shafahi et al., 2019) is a training technique that incurs almost no overhead compared to standard
training. The inner maximization and outer minimization are combined into one update step. The backpropagation step
calculates both the gradient with respect to θ as well as the gradient with respect to x at the same time. To ensure that the
adversarial noise is used on the same example, the algorithm trains on the same batch for multiple hops m.

Algorithm 2 ”Free” Adversarial Training (Shafahi et al., 2019)
1: Input: data X , epochs T , perturbation bound ϵ, learning rate τ , hop steps m, model weights θ
2: δ← 0
3: for t = 1 . . . T/m do
4: for batch B ⊂ X do
5: for step = 1. . . m do
6: Compute gradients∇θ and∇x simultaneously
7: ∇θ,∇x ← ∇L(fθ(x+ δ), y)
8: Update model weights θ
9: θ ← θ − τ · ∇θ

10: Clip perturbation δ
11: δ ← δ + ϵ · SIGN(∇x)
12: δ ← max(min(δ, ϵ),−ϵ)
13: end for
14: end for
15: end for
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C. Benchmark
Table 1 shows benchmark results of all methods presented in the main body that have an entry on the RobustBench
Leaderboard (Croce et al., 2020). It is important to note that the methods are only ordered and classified by the main
contribution of the paper. A method presented in the regularization section can still use generated data or efficient training
techniques. The reader is encouraged to check out the RobustBench leaderboard (Croce et al., 2020) for a more elaborate
leaderboard over more methods, different datasets and threat models.

Table 1. Clean and Robust accuracy for different methods on CIFAR-10. Robust accuracy is calculated via Auto-Attack (Croce & Hein,
2020) with an l∞ perturbation budget of ϵ = 8/255. Entries are sorted by highest robust accuracy within each method type. Numbers
taken from (Croce et al., 2020).

METHOD STANDARD ACCURACY ROBUST ACCURACY ADDITIONAL DATA

REGULARIZATION
(WANG ET AL., 2020) 87.50 56.29

√

(ZHANG ET AL., 2019B) 84.92 53.08 ×
(QIN ET AL., 2019) 86.28 52.84 ×

DATA GENERATION & AUGMENTATION
(WANG ET AL., 2023) 93.25 70.69

√

(REBUFFI ET AL., 2021) 92.23 66.58 ×
(GOWAL ET AL., 2021) 88.74 66.11

√

(CARMON ET AL., 2019) 89.69 59.53
√

EFFICIENT ADVERSARIAL TRAINING
(ZHANG ET AL., 2019A) 87.20 44.83 ×
(WONG ET AL., 2020) 83.34 43.21 ×
(SHAFAHI ET AL., 2019) 86.11 41.47 ×

BASELINES
(MADRY ET AL., 2018) 87.14 44.04 ×
PLAIN 94.78 0.0 ×


